Vortex Blooming

Weiyu Shen¹, Jie Yao², Fazle Hussain², Yue Yang¹

¹College of Engineering, Peking University

²Department of Mechanical Engineering, Texas Tech University

As basic topological structures, vortex torus unknots, knots, and links play essential roles in various fluid systems, such as hydrodynamic flows and plasmas. Their different topological evolutions, which depend on initial geometry, can significantly affect flow dynamics and turbulence cascade.

The evolutions of coiled vortex loops spirally wound on a torus with different winding numbers are visualized at the vortex Reynolds number $Re \ (\equiv circulation/viscosity) = 2000$. Vorticity isosurfaces are color-coded by the (positive and negative) helicity density.

For very larger winding numbers, the loop undergoes a transition to turbulence. Adjacent coils of the loop with strong vortex interactions break up into a hierarchy of small-scale structures, which further entangle each other and spread outward like a blooming flower.