Thermal Active Drops
Benjamin Reichert, Jean-Benoit Le Cam, Arnaud Saint-Jalmes and Giuseppe Pucci
Institute of Physics of Rennes, France

When a drop of volatile alcohol is deposited onto the surface of a bath of immiscible liquid, the drop spontaneously propels on the surface.

Evaporation energy is converted into directed motion.

The presence of a thin film of bath liquid coating the drop is associated to straighter trajectories.

Self-propulsion is triggered by a thermocapillary convective instability.

Spontaneous symmetry breaking of the surface temperature field...

...results into asymmetric thermocapillary stresses and symmetry breaking of the hydrodynamic flows.

A propulsive force emerges as a result of the viscous stress response of the liquid bath to the Marangoni stress exerted on the drop's lower interface.

In contrast to a solid Marangoni surfer, our drop propels in a direction opposite to the interfacial tension gradient. The propulsion scheme is rather similar to a classical squirmer.