One droplet, two regimes:

Unexpected dynamics on silicone elastomers

Aurélie Hourlier-Fargette
Arnaud Antkowiak
Sébastien Neukirch
Institut Jean Le Rond d’Alembert, Sorbonne Universités
Univ Paris 06, CNRS UMR 7190, Paris, France

A water-glycerol mixture droplet (dyed with fluorescein) is deposited on an inclined Sylgard 184 PDMS plate with a micropipette.

- The droplet begins sliding down at a constant speed, determined by the competition between gravity, viscosity, and capillary pinning forces.
- The droplet suddenly accelerates (without any modification of the substrate which is a homogeneous PDMS plate), which was unexpected.
- The droplet reaches a second regime with a faster constant speed.

Why two regimes?

Any difference in motion inside the droplet?

First regime

A rolling motion is observed inside the droplet in both regimes: the speed change is not explained by a sliding to rolling transition.

Second regime

Any change in interfacial properties?

The surface tension of the droplet is the initial surface tension of the water-glycerol mixture during the whole first regime. It suddenly changes to a lower value at the speed transition. This is due to the presence of uncrosslinked silicone chains collected progressively by the droplet during its descent on the elastomer. Extraction of uncrosslinked chains from the elastomer prior to the experiment leads to the disappearance of the second regime.

The transition to the second speed regime occurs when a complete layer of uncrosslinked chains is formed on the droplet.

Uncrosslinked chains collected by one single droplet are invisible to the naked eye, but collection of 1500 water droplets of 33 microliters in a high beaker after their two-regime descent on PDMS leads to interference colors showing the presence of an oil film at the surface of the beaker.