A treecode-accelerated vortex method with remeshing and adaptive refinement [1,2] is applied to simulate an elliptic vortex [3] in an incompressible inviscid fluid using the Lagrangian Biot-Savart formulation.

Color figures show vorticity evolution on logarithm scale; thin filaments develop; entrained fluid forms a tripole structure; vortex core and outer bands become axisymmetric.

B/W figures show the adaptive computational grid using a refinement criterion based on local vorticity variation.

Work supported by MCubed and Michigan Institute for Computational Discovery and Engineering (MICDE) Catalyst Grant programs at the University of Michigan.