



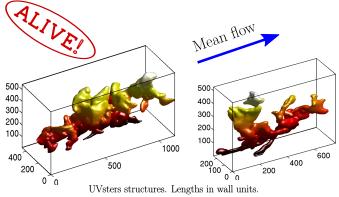

streamwise velocity fluctuations are organized in very elongated motions. However, its maximum lengths are still under debate, and are an object of ongoing research.

We present a new Direct Numerical Simulation of a turbulent channel in a computation domain with streamwise and spanwise lengths of  $L_x=60\pi h$  and  $L_z=6\pi h$ , where h is the channel half-height, and is intended to test whether there is a largest size for the structures that develop in the channel.

The spectral results show that a contour of the two-dimensional premultiplied spectrum of the streamwise velocity containing 80% of the kinetic energy closes at  $\lambda_x=100h$ . This is the first time that such a low energy contour has been shown to close within the computational box or within the spatial experimental domain and sets a new lower limit of  $\lambda_x \approx 100 h$  for the wavelengths at which some of the energy of the streamwise velocity fluctuations

Premultiplied two-dimensional spectra of the streamwise velocity at y = h, as a function of the streamwise and spanwise wavelengths. The contours are 0.1 and 0.6 of the maximum value. (---) (red), channel  $L_x = 8\pi$  and  $L_z = 3\pi$  (—),  $L_x = 60\pi$  and  $L_z = 6\pi$ . The dashed lines mark the box dimensions,  $L_x$  and  $L_z$  of each case

## Dazzling streaks and shocking uvsters!


## NOW IN 3D!



UVsters are the structures contributing most to the tangential Revnolds stress, which are obtained by extending the clasical one-dimensional quadrant analysis to three dimensions. The quadrant events are defined as connected regions satisfying

$$-uv > Hu'(y)v'(y)$$

where  $\boldsymbol{u}$  and  $\boldsymbol{v}$  are the instantaneous streamwise and wall-normal velocity fluctuations respectively, u'(y) and v'(y) their root-mean-square values and H the hyperbolic-hole size, taken to be H=1.75from a percolation analysis. Geometrically, they are 'sponges of flakes' with a thickness of the order of 12 Kolmogorov unit lengths.



You won't belive your eyes!



